Imperial College
London

DEPARTMENT OF COMPUTING

MENG JOoINT MATHS AND COMPUTING

Interim Report

Author:

Aaraf HOSSAIN Imperial College Supervisor:
ah2620 Dr. Roberto BONDESAN
CID:

018517167

June 19, 2024

Abstract

This work applies the concept of machine learning to improve the efficiency of
MCMC methods. Markov chain Monte Carlo (MCMC) methods sample from prob-
ability distributions, crucial when direct sampling is impractical. The Metropolis-
Hastings (MH) algorithm is fundamental in this field, it proposes new samples based
on current ones, which are then accepted probabilistically. The efficiency and effec-
tiveness of this algorithm is dependent on the proposal distribution used. Finding
suitable proposal distributions, is manual and time-consuming, particularly in clus-
ter algorithms. While the standard Ising model can be sampled from efficiently
using either the Wolff or Swendsen-Wang algorithms, this is not the case for the
Ising model with plaquette interactions.

In this paper I provide a generalisation of the Wolff algorithm incorporating MH to
sample from the Ising model without and with plaquette interactions. The frame-
work of this algorithm was first initialised by Roberto Bondesan and Nabil Igbal
from which I built upon. I then applied RL in order to learn a good proposal dis-
tribution to be used in the algorithm.

In the end I was able to replicate the original Wolff algorithm almost exactly when
sampling from the Ising model and had decent success when adding plaquette in-
teractions. The Effective sample size measures how many samples in a set are
independent and is able to measure the quality of a sampler. High ESS values were
achieved when K, the plaquette coupling term, was greater than zero and moderate
values were achieved when K < 0 indicating decent success.

Contents

1 Acknowledgments
2 Introduction

3 Background

3.1 Autocorrelation time
3.2 Effective Sample Size
3.3 Neural Simulated Annealing
3.4 Cluster Sampling Methods
3.5 Ising model with Plaquette Interactions
3.6 Wolff Algorithm
3.7 Policy Guided Monte Carlo
4 Implementation
4.1 RL Setup
4.2 RL Formulation
4.3 Policy Formulation 0 0L
4.4 Loss Functions
4.5 Autocorrelation time loss
4.6 ESSasareward.
4.7 Plaquette interactions L Lo

5 Evaluation

5.1 ESS results table
5.2 Conclusions and future work
References

Chapter 1

Acknowledgments

This project would not have been possible without the initial work and continuous
support of several individuals. I would like to extend my heartfelt appreciation
to my supervisor, Roberto Bondesan (hereafter referred to as R.B) and Nabil Igbal
(hereafter referred to as N.I), who laid the groundwork for this research through their
preliminary investigations. Their work on applying the concept of reinforcement
learning to Monte carlo cluster algorithms has been a crucial stepping stone for my
project.

Their expertise, guidance, and encouragement have been invaluable throughout
this process. I am grateful for their willingness to share their knowledge and for
providing me with the opportunity to build upon their initial research. Their support
has been essential in navigating the challenges of this project and in achieving the
objectives set forth.

Chapter 2

Introduction

Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms used to
sample from arbitrary probability distributions. They are particularly useful when
it is difficult or impractical to directly sample from a distribution. By constructing
a Markov chain that has the desired distribution at equilibrium, one can obtain a
sample from said distribution by recording states from the chain. One of the funda-
mental MCMC algorithms is the Metropolis-Hastings (MH) algorithm [5]. It works
by proposing a new state based on the current state, and then accepting or rejecting
the proposed state probabilistically .

While the MH (and MCMC methods in general) are powerful and versatile, they
have their problems which can impact their practicality. Since we only care about
the samples obtained at equilibrium, a large number of iterations may be needed
to achieve convergence. This can make them computationally intensive, especially
for complex models or high-dimensional parameter spaces. In addition to this, at
times it can be hard to distinguish whether the chain has reached equilibrium or just
appears to have (explained in [1] and 3.1). Samples obtained from MCMC chains
are often autocorrelated, meaning that consecutive samples are not independent and
the effective sample size may be smaller than the amount of samples obtained [1].
However the aim of my project is to tackle a different problem with MCMC methods
while keeping the aforementioned problems in mind.

MCMC methods often rely on something called a proposal distribution which is
sampled from in place of the target distribution. These samples are accepted prob-
abilistically based on if it is effectively coming from the target distribution itself [5].
Finding a suitable proposal distribution requires manual work that can be difficult
and time consuming. This is even harder in the setting of cluster algorithms such as
sampling from the Ising model with plaquette interactions where no good proposal
distribution is known.

My project will frame this as a reinforcement learning problem, in hopes that a
good proposal can be learned for the Ising model with and without plaquette inter-

actions. By characterising the sampler as an agent within the environment described
by the Ising model variant, it aims to learn how to maximise the effective sample size
of the sets it produces. The concept of learning more efficient monte carlo updates
using the effective sample size has been done before using Policy Guided Monte
Carlo[6]. However this approach requires large high quality datasets to sample from
complex models. My work will take this concept a step further by relying on the
sampler alone to learn without the use of such datasets.

Chapter 3

Background

3.1 Autocorrelation time

Since successive states in markov chains used in MCMC methods are correlated, it
may take upto 5000 iterations (5000 samples) or more just to obtain 2 truly indepen-
dent samples. The degree of similarity between a chain and a time lagged version
of itself is referred to as autocorrelation, [1] sheds more light on this topic in the
context of markov chains and how to estimate these values.

The paper makes the distinguishment between the two types of autocorrelation time
in Monte Carlo simulation, initialisation bias and autocorrelation in equilibrium. Ini-
tialisation bias refers to the initial distribution the chain finds itself given the start
configuration. If this distribution is not the stationary distribution 7 (almost always
the case) then there is an ”initial transient” present in which the data does not reflect
the desired equilibrium distribution. This means that the chain requires a certain
amout of iterations for this transient to be removed, this is commonly referred to as
the "burn in period” since these data points end up being thrown away. Throughout
the paper, the upper bound for this autocorrelation time is referred to as 7., if
we know the upper bound then we have a sure fire way of knowing when the chain
has converged. However in practice, 7., is almost never known for certain and can
only be estimated theoretically and empirically and even if it was known it may be
overly conservative, this can be the case when the state space of the chain is infinite
making it possible that 7.,, = co. While there is no sure fire way of finding 7., it
can be empirically estimated by measuring the autocorrelation function C/(t) for a
suitably large set of observables f (more on the autocorrelation function later). It is
made clear that empirically estimating 7.,, has the potential danger of metastability.

Metastability is when the chain being used appears to have converged but instead
has just settled down to a long-lived metastable region of configuration space that
may be far from equilibrium. While a proof or concrete upper bound on 7.4, is
evidence that metastability has been avoided, a heuristic arguement that 7., is not

too large is more feasible. If metastability is an issue, it is useful to know what each
of the metastable regions look like, so initial conditions in each of these regions can
be trialed. Consistency between these runs does not guarantee metastability has
been avoided but gives increased confidence.

Once equilibrium has been achieved the samples from the burn in period are dis-
carded. Since this data contains the initial transient, throwing it away means we
lose nothing and avoid a systematic error. Now the only concern is the autocorrela-
tion in equilibrium. Throughout this paper, the integrated autocorrelation time is
referred to as 7y, or Ting,r. Here f is a real valued function defined on the state space
of the chain S. It is shown that the sample mean, f, has a variance a factor of 27,,,; s
higher than if independent sampling was used. In other words, a run length of n
samples after reaching equilibrium effectively has n/27;, s independent data points
(Effective Sample Size). It is then stated that in the context of Monte Carlo meth-
ods, the computational efficiency of an algorithm is synonymous with 7, ; when
the time measured is units of cpu time. There maybe at times some complications
between the number of iterations and the complexity per iteration, but in principle
the smaller 7;,, is the better.

The paper also gives us a way of estimating 7;,; based on a finite but large sample.
First of all let f = {f(x)}.ecs be a real valued function on the state space S. Then
{fi} = {f(X4)} is a stationary stochastic process with mean

p=(f) =Y mf() (3.1)

where 7 is the equilibrium distribution of the markov chain X;. p is estimated by

the sample mean (which is unbiased) f
F=E31 (3.2)
o i=1 Z .

The unnormalised autocorrelation function for a time lag ¢ of this process is given
by

Ct) = (fofsre) — 1° (3.3)
the normalised autocorrelation function
p(t) = C(t)/C(0) (3.4)

and the integrated autocorrelation function

it = = > p(t) (3.5)
2

the estimator of eq (3.3) is given by

é Z fz+|t\ f) (3-6)

n—\t!

if 1 is unknown, if it is known then f can simply be replaced with it above. It follows
that the “natural estimator” of p(t) is given by substuting the above equation into
eq (3.4). The natural estimator for 7;,; is shown to not be a viable one since the
variance does not go to zero as the sample size n tends to infinity. To circumvent
this issue, a cutoff window of size M is used.

1 ifjt| <M
A(t) =) il < (3.7)
0 if|t|>M
n—1
R 1
Tint — 5 (38)
t=—(n—1)

This gives us a better estimator for the autocorrelation time since the variance goes
to zero as the sample size increases,

202M +1)

var(Tin) ~ ——Tiu

(3.9)

however it does introduce a bias

bias(Fim) = —% > pt)+o (%) (3.10)

[t|>M

The choice of M is a tradeoff between bias and variance. A large M may give us
a low variance in our estimate of the autocorrelation time but too large will result
in a large bias and vice versa. I suspect this choice of M will possibly be a hy-
perparameter when constructing a reward function that utilises the autocorrelation
time since better and worse estimates will allow us to explore different realisations
of our end proposal. Reading this paper has made it clear to me that a good reward
function should aim to minimise both 7.,,and7i,: (T being of more importance)
while keeping metastability in mind and taking measures into avoiding it.

3.2 Effective Sample Size

The effective sample size (ESS) measures the amount by which autocorrelation
within a chain increases uncertainty in estimates as exaplained by [2]. While I
have briefly mentioned ESS in the previous section, this reference manual reaffirms
some of the claims in [1] and provides an alternative way to estimate autocorrelation
and ESS. Due to the correlation between samples in a chain, given N samples, the

number of independent samples is the effective sample size, N.ss. [2] mentions that
Neyy is related to the autocorrelation time in the same way as [1]

N
Nt = 00 &1
The denominator here is synonymous with 27;,, in eq (3.5). The manual explains
that the autocorrelations and the ESS by extension cannot be calculated due to the
intractability of integrating the probaility function associated with the chain (see
section 16.4.2 in [2]). As a result, the autocorrelations are estimated by a different
method from [1].

M different chains are used with p,,(t) being the autocorrelation at lag ¢ for chain
m € {1,.., M}, this is estimated using an FFT package(see [2] for more details).
The combined autocorrelation is given by

52— LM 52 O (T
plt) =1-— M Zf”f mfm) (3.12)
var

where o2, refers to the within chain variance estimator, var™ being the multi chain
variance estimate and 62 = % Zi\le o2 which is then used to estimate the ESS

. M-N M-N
Nefle 2RFT 5 - 1 F Pt
+Zt=0 p(t) +Zt:0 ()

where P(t) = p(2t) + p(2t + 1). Here k is the largest integer such that P(#') > 0 for
allt' =1, ..., k.

(3.13)

Since one of the aims of my project is to find a practical way to use ESS and
autocorrelation in a reward function, I am in a position to apply either of the two
methods (or find others later) and put them into practice. An immediate downside
I see with this method is that it relies on working with multiple different chains.
While it may provide us in higher confidence in our estimates, it may be computa-
tionally inefficient or too intensive based on the sample size or the amount of chains
used. What also remains unclear at this time is the use of the FF'T package for the
estimates of pp,(t). If this ends up being infeasible or not practical I can rely on
estimating these autocorrelation using the method outlined in section 2.1.

3.3 Neural Simulated Annealing

Having a proposal distribution be learned via the means of a reinforcement learning
algorithm is something that has been done before. An example of this is seen in the
paper talking about Neural Simulated Annealing [3].

Simmulated annealing (SA) is a stochastic global optimisation metaheuristic that

is applicable to a multitude of discrete and continous variable problems. This pa-
per focuses on applying it to combinatorial optimisation (CO) problems. A CO is
defined by a triplet, the set of problem instances, the set of feasible solutions and
an energy function denoted by the symbols (¥, X, E) respectively. Simulated an-
nealing constructs an inhomogeneous markov chain zg — x1 — x5 — ... for r, € X
which, in the context of a CO, converges asymptotically to a minimiser of the en-
ergy function. The transition from the current state, xy, to the next state, xp,1,
depends on a proposal distribution, 7 : X — IP(X) and a temperature schedule.
The proposal distribution is sampled from based on the current state (known as
the Metropolis-Hastings step), perturbing the current solution in hopes of finding
a lower energy solution. This new state, 2, is either accepted with probability p
setting xx11 = 2’ or is rejected and xpy1 = x (see Algorithm 1 in [3] for more
details.). The temperature schedule T3, T5, ... is a parameter which is responsible
for the balance of exploration and exploitation. This ensures that the perturbations
smoothly approach an optimum of the energy function. It starts high and goes low
with the limit 7, — 0. Provided that the chain is long enough, the chain will visit
the minimisers of E almost surely under certain regularity conditions. However,
the convergence speed is ultimately determined by 7 and the temperature schedule,
both of which are hard to tune.

The paper poses simulated annealing as a Markov decision process (MDP) which
would allow for reinforcement learning to work in tandem with SA. This creates
the opportunity to optimise the proposal distribution using RL while preserving the
convergence of vanilla SA, this is dubbed as “Neural SA”. Due to the nature of SA,
it naturally fits into the MDP framework, an MDP M = (S, A, R, P,) consists of
state space S, a set of possible actions A, a reward function R, a transition kernel
P :SxA — IP(S) and a discount factor v € [0, 1]. A stochastic policy 7 : S — IP(A)
is added on top of this, which, along with the transition kernel defines a length-K
trajectory T = (so,ao, S1,a1,...,Sk). The trajecotry can also be seen as a sam-
ple from the distribution P(7|7) = po(so) [1r—g P(Sk1+1|5%, ar)m(ax|sk), where where
So ~ po is sampled from the start-state distribution py. An MDP has been solved
if the a policy has been found that maximises the expected return E..p(;) [R(7)]

where R(7) = Zi:ol YE=FR(sk, ay, si11) is the discounted return.

SA is formalised as an MDP, with states s = (x,1,T) € S for ¢ a parametric
description of the problem instance and 7' the instantaneous temperature. An ac-
tion a € A perturbs (z,¢,T) — (2/,9,T), where 2/ € N(z) is a solution in the
neighborhood of xz. The Metropolis-Hastings (MH) step in simulated annealing is
perceived as a stochastic transition kernel, regulated by the system’s temperature.
The transition probabilities adhere to a Gibbs distribution, and the dynamics are
expressed as

x', with probability p
Te+1 = . -
xy, with probability 1 —p

where))
(1’ e—Tk(E(w §'¢)_E($k§¢’))).

p = man
This defines a transition kernel P(sgi1|sg,a), where spy1 = (241,90, T). Proxi-
mal Policy Optimization (PPO) was used to learn the policy 7, with rewards be-
ing either the immediate gain r, = E(zx;9) — E(xgs1;7) or the primal reward
Tp = MiNge,, ., E(x;1) . The transition kernel incorporates the information in the
current state and the energy function before making its decision to accept a given
perturbation or not, effectively quantifying the likeliness of finding a lower energy
solution.

The Policy network architecture was deliberately kept simple. A state s, is mapped
to a set of N feature vectors which were problem dependent and the paper notes
that there should be a natural way to do this for a given CO problem (this was the
case for all of their experiments). They are then fed into an MLP independently,
embedded into a logit space and then mapped to probabilities by a softmax acti-
vation. A visualisation of this can be found in figure 2 of [3]. The architecture is
adaptable to CO problems of any size as the complexity scales linearly with N. By
keeping the architecture lightweight, any issues regarding the length of a SA chain is
avoided since they typically require a large amount of iterations before converging.
On the topic of convergence to an optimum, SA requires the markov chain associated
with the proposal distribution to be irreducible. Irreducibility being that for any
temperature, any two states are reachable through a sequence of transitions with
positive conditional probability under 7. The network policy fulfills this criterion,
provided that the softmax layer does not assign zero probability to any state—a
condition typically satisfied in practice. Consequently, Neural SA inherits conver-
gence guarantees from the standard simulated annealing approach.

Neural SA was experimented on a variety of problems in section 4 of [3], including
the TSP problem and Bin Packing problem. The results of which were compared to
more complicated RL frameworks, Operations Research tools and other algorithms
used to solve these problems and was competitive with them. Even with little to
not fine-tuning of the models hyperparameters, vanilla SA was far outperformed and
was within a few percentage points of the global minima. Neural SA only is shown
to only require training data of problem instances to train without requiring solu-
tions, this along with its scalability to any problem size and lightweight architecture
the authors believe that Neural SA is a promising solver that can strike the right
balance among solution quality, computing costs and development time.

While Neural SA is set in the context of CO problems, I can take some of the
learnings and findings from this work and apply it to my project. For instance, I
can see that using RL to have the proposal distribution be a learned policy is at
least feasible and not out of the realm of possibility. What is important to consider
is how the paper related SA to a Markov decision process since it is a key aspect in

10

applying RL to an MCMC method. Since the aim of a CO problem is to minimise
an energy function, this was incorporated in the dynamics of the MDP and reward
of the agent, both areas where my work will differ. Due to the computationally
intensive nature of MCMC methods, a lightweight architecture may also be some-
thing I need to replicate in the context of my work. On the flip side, the paper
does not talk about tuning the temperature schedule. This can either be left as a
hyperparameter or be something I look to optimise in some way shape or form.

3.4 Cluster Sampling Methods

In this section I will introduce the Ising/Potts model and a method to sample from
it. The model is defined on a set of nodes organised on a lattice each with a label
[l €1,.., L. FEach node has 4 nearest neighbour connections with edges connecting
them if they have the same label. An illustration of this is in the figure 1(b) below.

(a) Gy (b) G (c) CCP

Figure 3.1: taken from [4]

Formally put, let G =< V| E > be an adjacency graph with 4 nearest neighbour
connections with each vertex v; € V having a corresponding state variable x; €
{1, ..., L}(or colour/label). The total number of labels is predefined, if L = 2 then
we have the Ising model, otherwise we have the Potts model. Let X = {xy,...,z1}
denote the labelling of the graph, then the Ising/Potts model is a markov random
field,

1(X) = mrs/prs(X) = %exp{— Z Bstl(xs # 1)} (3.14)

<s,t>€k

where Z is a normalisation constant and By > 0. Such a model is typically used
to study phase transitions in statistical mechanics and computational physics. The
Swendsen-Wang(SW) algorithm, detailed in [4], is an MCMC algorithm that can
efficiently simulate this model and its phase transitions. The algorithm introduces
a set, of auxiliary variables on the edges,

11

U = {pe: pe € {0,1},Ve € E}

An edge is disconnected if and only if . = 0, these binary variables follow a Bernoulli
distribution conditional on the vertices they correspond to,

el (zs,) ~ Bernoulli(ge1(xs = xt) (3.15)

Ge=1—e (3.16)

With this we have pu. = 1 with probability ¢. if the nodes have the same label
and p. = 0 automatically if they do not share the same label. The SW algorithm is
split into 2 steps which I will outline below.

1. The clustering step: Given the current labelling X sample resample the
variables in the set U according to the distribution outlined in Eqs.(3.15) and
(3.16). Note that the “sampling”” for the edges between nodes with different
labels can be automatically set to 0 i.e for the edge e =< s,t > its auxiliary
variable u, = 0 if x4, # x;. This splits the edges into sets,

E(X) = E,p(X) U Eopp(X) (3.17)

The remaining edges are then turned off with probability 1 — ¢, further di-
viding F,,(X)
E(X) = E,,(U,X) U E,;(U,X) (3.18)

where E,, (U, X) form a number of connected components which is denoted
by
CPUX)={cepi:i=1,..., K, withUX, cp; =V} (3.19)

Vertices that are in the same connected component cp; are guaranteed to have
the same label

2. The flipping step: Select one connected component V;, € C'P at random and
assign the same label [€ 1,2,..., L to all nodes in V. The label [follows a
discrete uniform distribution

xs=1Vs € Vo, L ~uniform{l,2,...,L} (3.20)

This step can be applied to more than just one or all of the connected com-
ponents

For homogeneous models (3;; = /3), small values of 3 appear random whereas large
values of 3 (close to 1) almost has the same label for all nodes. There is a value £
around 0.8 or 0.9 where a transition between the “random” and “uniform” labelling,
with its inverse 3, is known as the critical temperature. The time for convergence

12

is known as the mixing time and when the SW markov chain has converged, exact
sampling is reached. I will touch more on this below.

let the SW markov chain have kernel K and initial state X, after t steps the
state follows probability p; = §(X — Xo)K* where (X — X)) is given by

A way to measure the convergence of the chain is via the total variation
Ipe =l = 5 3 pe(X) — ()| (322)
X
which is formally used to define the mixing time
Tmiz = II)l(EEXmiH{t e = 7l <€} (3.23)
where 7,,;; is a function of € and the graph complexity M = |G| in terms of the

number of vertices and edges. When a chain is said to “mix rapidly”, it means that
it has a relatively small 7,,;,. Formally, if 7,,;,(M,¢€) is logarithmic or polynomial
then the chain mixes rapidly. The paper states that analytical results have surfaced
that shows that the SW chain mixes rapidly even on sparsely connected graphs

3.5 Ising model with Plaquette Interactions

For ease and simplicity I will refer to the Boltzmann weight of the Ising model rather

than 3.14
7(S) = exp (BJZ H ai) (3.24)

leL i€l

The 2 equations are analagous for J > 0 and constant 5. L corresponds to the edges
in the model and o; denotes the “spin” (label) at node i such that o; € {—1,1}.

The Ising model with plaquette interactions is an extension of the standard Ising
model. This model adds terms that allow for interaction between corner sites on
each “plaquette”” or square visible made by the lattice structure of the model, A
visualisation of a plaquette can be seen in figure 3.2. Plaquette interactions allows
for the consideration of more complex patterns of spin interactions beyond nearest
neighbour interactions. The Boltzmann weight for this model is given by

7(S) = exp (BJ SSTIsi+5> 11 si> (3.25)

lel i€l pEP i€p

13

Figure 3.2: A visualisation of plaquette interaction where the different colours rep-
resent opposing spins and the lines representing connections or interaction terms.
Plaquette interactions allow for corner sites of a plaquette to interact with one an-
other through the plaquette

Due to the complex nature of the model, it is hard to sample from and as a result,
there are no exact sampling methods like there is for the standard Ising model (SW
and Wolf algorithms). Boltzmann machines were used in [7] and had varying success
in trying to sample for this model. The major drawback established in the paper
was that the acceptance rates decreases for large systems due to a mismatch between
their surrogate model and the original physical model.

3.6 Wolff Algorithm

The Wolff algorithm is another sampling method for the Ising model. This sampling
method was developed shortly after the SW algorithm and was essentially a single
cluster variant of it. Starting from the Boltzmann weight in 3.24, It contains the
following steps:

1. Choose a site x randomly as the first point of a cluster to be flipped and
prepare an empty stack.

2. Go through the nearest neighbors y of x and add them to the cluster with
probability

p(os,0y) =1 —exp(min(0, —25J0,0,)) . (3.26)

14

3. For every site y that is added to the cluster also add it to the stack.

4. take an item off the stack and iteratively repeat steps 2 and 3 until the stack
is empty

5. For every site in the cluster, flip its spin (1 to -1 and vice versa)

3.7 Policy Guided Monte Carlo

The next paper I will cover [6], introduces a framework called Policy Guided Monte
Carlo (PGMC) that uses reinforcement learning to improve MCMC sampling. It
addresses that the autocorrelation of the samples lead to long and computationally
expensive simulations to achieve reliable results and that many machine learning
ideas and methods have risen in order to combat this. One such method is ex-
plained in the paper and is called the Effective model Monte Carlo (EMMC).

Given a probability density (referred to a model in this paper) w : S — Rsg
for a state space S, EMMC splits the task sampling from w into 2 tasks:

1. A learning/training stage. After a dataset following the distribution of w
is obtained, an effective model wy : S — R, S c S is designed by a set of
parameters § = {6;}. This effective model is then fitted to the data set via some
form of machine learned regression so that wg(s) ~ w(s) for states of statistical
significance. By construction, w should be computationally advantageous over
w, be it that it is cheaper to evaluate or allow for a better sampling method.

2. 1wy is used as a proposal generator. An MCMC sampling scheme should be
applied onto wy to perform a number of updates s — s; — s9 — ... = 5, = 5.
The state s’ is then proposed as a sample for the original model and is accepted

with probability
wy(s)w(s')
)

Wy (s)w(s)

which ensures that the detail balance condition holds, given by

a(s — &) = min ll,

w(s)m(s = sha(s = &) = w(s)m(s — s)a(s — s) (3.27)

where 7(s — §') is the probability of proposing state s’ when at the state s.
When this condition holds we know that the chain will asymptotically sample
from the distribution of w.

EMMC has been shown to be a vast improvement shown by references [7,8,10-15] in
[6] but has a few limitations. First of all the effective model has to be flexible and
sophisticated enough to imitate the original model otherwise the result may actually
be worse than a traditional MCMC method. Additionally, sufficiently good training
data is required for the learning stage, with more complicated models requiring a

15

larger dataset. A lack of quality in the training data will be present in the proposal
generator i.e. relevant parts of the state space will not be present or represented
enough in the samples produced.

Much like in [3], the work mentions that a lot of the notions in reinforcement learning
lines up well with MCMC and approaches it in a similar fashion:

e Actions - the action space at a given state A, is defined to be all the possible

updates a := s — s’ with the inverse of this action being defined as a™! :=

s’ — s

e Policy - the policy for taking an action a € A, is quantified by the proposal
probablity 7 : A; x S — [0, 1]

The acceptance rate used for the MH step is given by

(w(sm(s" — s)
w(s)m(s — &)

a(s — §') =min |1,) (3.28)
This way the markov chain dynamics will be determined solely by the choice of 7. If
this was in the setting of the original Metropolis algorithm then the choice of m would
be so that the detail balance equation (eq (3.27)) would hold making the equation in
eq (3.28) simple. The paper mentions that this is not necessarily optimal and from
my interpretation this would only limit the space finding an optimal policy to fit the
original model. To find the optimal policy, the paper introduces something called
a performance factor. The performance factor measures the efficiency of a policy
by using the integrated autocorrelation time 75 : C' — [%, oo) and a cost factor
u: C' — R where C' is the set of all possible trajectories of states that the markov
chain can follow through. Due to 7o being measured in monte carlo updates in this
work, to reflect real work performance of generating a trajectory it is multiplied by
the cost factor that incorporates all important costs with obtaining a trajectory.
The performance factor is given by

L
270(c)u(c)

co(c) (3.29)

the larger the performance factor the better the sampling. A 0 performance factor
implies that the samples are perfectly correlated whereas eo(c) = u(c)~! means that
each sample is independent. The performance factor plays the role of a reward
function and an optimal policy is said to maximise the expected performance factor
given by

(€0)emw = D _ co(0)p(c) (3.30)

ceC

where p(c) denotes the probability of creating the trajectory ¢. Once this policy is
found it is used to sample from the original model.

16

Chapter 4

Implementation

4.1 RL Setup

Since my work is built upon the foundation set by R.B and N.I, I will first summarise
the important set up and findings. They set out explore whether it was possible to
use reinforcement learning to construct better cluster sampling algorithms. Specif-
ically, an important milestone would be to be able to effectively sample from the
Ising model with plaquette interactions since there is no good sampler known for
it currently. They began by trying to use reinforcement learning to to construct
a Wolff-type algorithm for the ordinary 2d Ising system before adding plaquette
interactions.

Starting from the Ising model’s Boltzmann weight in eq (3.24), we can set J = 1
since it always enters the combination B.J,

7(S) = exp (B Z H O'Z-) (4.1)

leL i€l

Where are fixed number of sites/nodes (S := ;) on a 2d lattice with spins o; € {1,1}
and L denoting the set of links/edges.
The initial RL framework containing the wolff algorithm .

1. Pick a site z randomly and add it to the cluster C. Let oy be the value of this
seed spin.

2. For each nearest neighbour y of x, add them to the cluster with some proba-
bility m(y; o; 00). The notation means that this probability sees:

(a) The set of spins o.
(b) The site that we are considering y.

(¢) The value of the “seed spin” in the cluster oy.

17

This probability depends on some parameters etc. in 6, and is something that
the RL algorithm should optimize. For practical reasons it should presumably
only consider the spins in a window of a certain size around y.

3. Repeat this by now considering each of the neighbours of each of the added
sites y until no more sites are added to the cluster.

At the end of it we will flip the spins in C'. Let us denote the spin configurations of S
before and after the above steps by o and ¢’. It is then important to consider the full
transition amplitude of going from ¢ — ¢’ which we will denote with W (¢ — o),

logW (o — o) Zlogwe x;0,00) Z log(1 — my(x; 0,00)) . (4.2)
zeC zeS\C

We now need to determine the probability of the reverse move, which, by the
same logic, is

logW (o' — o) Zlogm (x;0", —00) Z log(1 — mp(z; 0", —09)) - (4.3)
zeC zeS\C

Now we have to determine the acceptance ratio for detailed balance to be upheld.
If the acceptance probability is A(c — ¢’), then the detailed balance equation is
(see p95 of [9]):

W(o = o) Alo = o) ,
W0’ = o) Al = o)~ P FAE) = E(9))) (4.4)

Where Eo is the energy of the model for a given spin configuration

o) = —JZO’Z'O'j - hZUi (4.5)
(4,) i

where h represents the external magnetic field (set to 0 in our case) This is solved
using the following choice of A(o — o'):

W(o' — o)
"W(o — o)
Rounding things out with a standard Metropolis Hastings step, the algorithm is
completed. Now all that was left to do was to design a good policy and construct
a suitable loss/reward function for it to learn. Finally, let’s note that Wolff fits
precisely into this framework: it is of the form above with the following choice for
Ur'e

A(o — ¢') = min (1 exp (—5AE)) AE = E(¢') — E(o) (4.6)

mo(x;0,00) = 1 — exp(min(0, —2f0,0¢)) (4.7)

i.e. — if the spin disagrees with the seed, don’t add it, and if it agrees with the
seed, add it with probability 1 — e~2%. With this choice of probability density, one
can analytically show that A(c — ¢’) = 1, which means that for this optimization
scheme for the 2d Ising model, Wolff is the best that one can do.

18

4.2 RL Formulation

We follow notation of [3] to formalise this as a traditional RL problem. We consider
the Markov chain o) — 0@ — ... —) as a sequence of states in a Markov
Decision Process with transition operator,

Iy(oc — o) =W(o — d')A(c — o) (4.8)

Where we combine the transition amplitude of going from o — ¢’ with the metropo-
lis hastings step where we accept the transition with probability A(c — ¢’). The
space of state is therefore the space of spin configurations (the space of all possi-
ble o). The space of actions is the space of clusters (connected subset of vertices).
Given a cluster (', the transition function simply flips the spins on C' in o to pro-
duce ¢’ — in this sense II of (4.8) is our policy. The reward is then given by the
negative of the loss function, 7(c,0’) = —L(c,0’). Defined 7 = (¢, 0@ ... @)
and R(1) = 321" 7' (01, 0411), we want to maximise E,p,(Rp(7)) where P is the
probability of the whole Markov chain. We have emphasised dependency of both P
and R on 6.

19

4.3 Policy Formulation

The next step was to design a policy that was able to learn how to sample for a given
model in eq (3.24) or eq (3.25) with the first goal being able to replicate the Wolff
policy in eq (4.7) for the Ising model in (4.1) (the same as (3.24) with J =1). As a
result, I evaluated two distinct strategies for determining the probability of adding
a spin to a cluster. Both policies aim to integrate a simple yet effective mechanism
to enhance the clustering process, and their designs are as follows:

Policy 1: Simple Cluster Policy

This policy is built around a very simple two-parameter cluster algorithm, which
serves as a gentle generalization of the Wolff algorithm. It is designed to be straight-
forward and efficient for a 2-spin Zs preserving input.

Parameters:

e pl and p2 are the two parameters initialised with random values and set to be
trainable.

e beta is an additional parameter that can be used to control the coupling
strength.

Window Size:
o A fixed window size of 1 is used.
Output:

e The final output represents a probability density of adding a spin to a cluster
via a softmax activation.

class SimpleClusterPolicy(torch.nn.Module):

def __init__(self):
super () . __init__Q)

self.pl = torch.nn.Parameter(torch.randn(1), requires_grad=True)
self .p2 = torch.nn.Parameter(torch.randn(1l), requires_grad=True)
self.window_size = 1

def forward(self, x):

pDrop = torch.sigmoid(self.pl + self.p2 * x[0] * x[1])
return torch.cat((1 - pDrop.unsqueeze(0), pDrop.unsqueeze(0)))

20

Policy 2: Policy with Pairwise Products

The second policy, PolicyPairwiseProducts, is designed to take into account all
pairwise products within a specified window size. This approach utilises the sym-
metry of the problem and the interactions between pairs of spins.

Window Size:

e The window size is a parameter that determines the scope of the pairwise
products considered.

Row and Column Markers:

e These markers are used to extract the upper triangular indices for the pairwise
products.

Network Structure:

e The input, consisting of a flattened N x N window and an additional seed spin
value, is passed through a linear layer followed by a Softmax layer to produce
the final probabilities.

Output:

e Similar to the first policy, the output consists of a probability density, indicat-
ing the probability of adding a spin to the cluster.

class PolicyPairwiseProducts(torch.nn.Module) :
def __init__(self, window_size):

super () .__init__()

self.window_size = window_size

self.rows, self.cols = torch.triu_indices(
(self.window_size*x*2 + 1), (self.window_size*x*x2 + 1), 1)

self.s = torch.nn.Sequential(
torch.nn.Linear(

int ((self.window_sizex*2 + 1) * (self.window_sizexx2) / 2), 2),

torch.nn.Softmax (dim=-1)

def forward(self, x):
x_pairs = torch.outer(x, x)
return self.s(x_pairs[self.rows, self.cols])

Comparison and Consideration

Simplicity vs. Complexity: The simple cluster policy is simpler and poten-
tially easier to train due to its limited parameter space. However, it may lack the
expressiveness needed for more complex interactions.

21

Expressiveness: The pairwise product policy is more complex and considers
interactions between all pairs of spins within the window, potentially capturing
more nuanced behaviors but at the cost of increased computational complexity and
training time.

Implementation: Both policies utilise the Softmax function to ensure that the
output probabilities sum to 1, making the interpretation of the results straightfor-
ward.

Evaluating the performance and trainability of these two policies is crucial. This
evaluation will reveal how effectively a simple policy can sample from complex mod-
els (if it is even possible), and how well a complex policy can generalise and learn
to sample from a simple model.

4.4 Loss Functions

Before I made my own candidate for the loss function, R.B. and N.I. had decent
success with using the pointwise covariance. This loss was calculated over an en-
semble of M parallel chains and before we proceed let I € {1,2,--- , M} distinguish
the chains in the ensemble and 02{ . be the spin at site ¢ of chain / at monte carlo
time t. The pointwise covariance at each timestep is given by

1
I 1T I I
Ct,t+1 = <Ut 0t+1>latt = m Z Tit " Oijt+1 (4-9)
i
This is used to construct the loss function by taking the sum over the entire the

entire ensemble
Loz = (Cl1) (4.10)
I

This is then used to optimise the policy at each timestep. We can measure our
success with this approach by directly plotting the movement of the probability
density as shown in figures 4.1 and 4.2 with the aim to be to replicate wolff as in eq
(4.7). Simply put, we would like for the orange star in these figures to be as close
as possible to the grey dot. The models were trained for standard Ising model (4.1)
5=0.4,J =1ona 10x10 lattice.

22

Probabilities for model with single-spin window

p(add|spins same)

0.5 4 .
. - ° -
.
. .
.
041 »° ’
. o9 @ - .
‘[E‘ . . « e ® .
.o
E o3
_:E : .
© L]
") .
£ .
Q .
0
=l 0.2 1 N .
T)
8 ..
(=8 . . .
. L]
0.1 A .
L.
0.0 1 * = s ®ase e .'.’| *
T T T T T T T T
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Figure 4.1: Movement of the probability density for the SimpleClusterPolicy using
eq (4.10) as the loss function during training. Grey dot is the Wolff policy (4.7)

p(add|spins different)

Probabilities for model with single-spin window

0.5 1

0.4 4

0.3 1

0.2 1

0.1 1

0.0 1

0.1

T T
0.3 0.4
p(add|spins same)

0.2

Figure 4.2: Movement of the probability density for the PairwiseProductPolicy using
eq (4.10) as the loss function during training. Grey dot is the Wolff policy (4.7)

23

The results it suggests that this implementation of the loss performs well since
it is able to replicate wolff to a certain degree of accuracy. In reality, It can be
seen that the density moves in a horizontal window of the density without actually
converging on the grey dot. In any case, the policies were able to effectively learn
the parameters required to bring it close to wolf. It was hard to find any issues with
this current loss but before taking a look at how it performs on the on the plaquette
model, can we do better than this?

4.5 Autocorrelation time loss

The loss function used in the previous section came to be due to other implemen-
tations having very clear flaws. One such flaw being just adding spatial variance
on the spin configurations suggesting a lower loss which was pointed out R.B and
N.I.’s notes. This would be no better than just using a random number generator
and that the quantity that we actually want to minimise was the integrated auto-
correlation time. This was done indirectly using the pointwise covariance but only
upto a certain degree. I set out to see if it was possible to do this directly.

The first step was to implement a way to calculate this statistic. I did this using
the implementation in Sokal’s notes [1]. Implementing eq (3.8) for n samples we can
simplify the formula as follows,

n—1 M

AN =5 S A1) (111)
t=—(n—1) t=—M

Tint =

N —

Where a suitable window size M is determined as suggested in Sokal’s notes [1].
The choice of the function f was the energy of the spin configuration, so at timestep
t, f; is given by

fi = flo") :E(O't) = —JZO’?O?—}LZUE (4.12)
(4.4) i

Which was then used to calculate the autocorrelations in order to calcluate 7;,;. The
next step was to somehow use this in the existing framework. Immediately, these
questions came to mind:

1. How many samples shall I use for the estimate?
2. Is it possible to use earlier samples?
3. How do I incorporate the state transition probabilities with 7;,,;?

4. Will T have to scale/transform the estimates the estimates of 7;,; with some
kind of function?

24

In the previous implementation of the loss, each training step only required gen-
erating one sample per chain in the ensemble. Training time was actually dominated
by the time needed to generate samples, so by having a small number of samples
generated per training step, training times were short. However, to get a reliable
estimate of 7;,;, one would need around 400 samples. Compromising on this with,
say, 100 samples would result in the estimate of 7;,; having a very high variance
for a fixed policy, which would make training very unstable. Even in the best case
scenario of using around 400 samples, training times would increase hundredfold.
Trying to remedy this, I tried to see if it was possible to use earlier samples. [
quickly realised this would not work and would at best half the training times. For
example, using 200 samples from the previous from the previous training step and
generating 200 new ones. The problem of long training times was still there at the
cost of worsening our estimate of 7;,; for training. As a result I decided to use a
single chain and not an ensemble of them. This way I could get a way with using
400 samples per training step rather 4000 if I was using an ensemble of size 10. This
was still really long but was actually feasible.

Now all that was left was to consider how to incorporate the state transition
probability. The problem here is that it is not as simple as taking the probability
of My(at — o'*1) but rather Iy(c? — o't — ... — o). T thought of just
considering Iy(c" — o'™™) but that would miss the point entirely of considering all
the state transition probabilities that resulted in the estimation of 7;,;. As a result,
I chose to change the transition operator for this by taking the average transition
probability over the chain.

1 & , ,
I,(c" — o) = E (0" — o) (4.13)
1=t

n -

I fear that this may wash out most of the probabilities but this is the best I can come
up with. For now I will use 7;,; and look to experiment with applying a function
or scaling it later. Like in the previous section, I try to see if both policies are able
to replicate the wolff policy after training, the results can be seen in figures 4.3 and
4.4. The models were trained for standard Ising model (4.1) for § = 0.4,J =1 on
a 10x10 lattice estimating 7;,; using 400 samples.

25

Probabilities for model with single-spin window

0.6 1

0.5

0.4 1 .

0.3

0.2 A

pladd|spins different)

0.1 4 o

0.0 7 o]

T
0.1 0.2 0.3 0.4 0.5
pladd|spins same)

Figure 4.3: Movement of the probability density for the SimpleClusterPolicy using
eq (4.11) as the loss function during training. Grey dot is the Wolff policy (4.7)

Probabilities for model with single-spin window

0.25 1

0.20 +

0.15 4

0.10 +

pladd|spins different)

0.05 ~

0.00 ®

T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
pladd|spins same)

Figure 4.4: Movement of the probability density for the PairwiseProductPolicy using
eq (4.11) as the loss function during training. Grey dot is the Wolff policy (4.7)

26

These results were not particularly the ones I desired. Both policies moved in the
opposite direction from the wolff policy and then got stuck in their own respective
regions with very little movement. After trying many different transformations, one
being — log 7;,:, they all showed the same behaviour as figures 4.3 and 4.4 with no
consistent movement towards wolff. It was clear to me that this approach was flawed
and that I should try something else. My main suspicion as to why this approach
did not work very well was due to the implementation of the transition operator.
The concern of the amount of samples used to estimate 7;,; was still there but it was
clear that the adjusted transition operator was fundamentally wrong. Fortunately,
I had another approach in mind.

4.6 ESS as a reward

By minimising 7;,, the effective sample size (ESS) would be increasing as a result.
This is just a byproduct of the formula stated in eq (3.11). Putting more emphasis on
the ESS rather than 7;,; I was able to look at the problem from another perspective
and try a different approach.

Speaking strictly in RL terms, I viewed the policy that was responsible for gener-
ating the samples as the "agent”. Like before, the environment or state space would
still be the set of all possible spin configurations (all possible o). After generating
a sample the "agent” would either accept or reject it. The key difference is that the
action itself would be accepting or rejecting of the freshly generated sample rather
than both generating the sample and accepting/rejecting the sample. This mean
that our transition operator, —, taking us from o' — ¢’ (the proposed sample)
would be (4.6). Writing this explicitly,

W(o" — o)

ng(at — O'/) = A(O't — O'/) = min (1, m

exp (—BAE)) (4.14)

Then after a metropolis hastings step, we accept ¢’ with probability (4.14) and set
o't = o' otherwise we reject it and set o'*! = ¢/, For the reward function I would
be considering the ESS for the previous m samples. I will use the following notation,

ry(m) = ESS(—m) = ESS({c"""" ... [o'}) (4.15)

Previously I mentioned that this would not be a good idea since it would give us a
bad estimate of 7;,; and would not help us that much. While that was true for that
approach, there was a way to make it work for me here. By considering discounted
reward,

[e.e]

Gi=> Vi (4.16)

k=0

27

for v € (0, 1) the samples from the policy used in the previous time step would slowly
get washed out for the later rewards. An example would make this clear, if the policy
at time ¢, 7*, is used to generate the samples s‘** for k > 0 and the policy used at
the previous time step, 7'~! generated the samples s'~%, if we are considering the
last 300 samples for the reward then the value r; ;150 used to calcuate the cumulative
reward would have 150 samples from 7! and 150 samples from 7'~!.Note, I use s
instead of ¢ to denote the samples since they are not to be confused with the state
of the markov chain since the purpose of the extra samples s* are used to generate
the cumulative reward by “looking ahead”. The extra samples are stored and used
in future iterations. The idea is to have a high discount factor (7 close to 1) so that
future rewards are given high weight in hopes that the sampler is guided to a region
of the parameter space where the ESS is maximised and given a chance to converge
by considering the samples generated by the previous version of the sampler. By
setting m = 300 I try to maximise the estimated cumulative reward,

ét = Z’}/krt_i_k (417)

This way I would be I would generate 300 new samples every training step and
“looking back” to the newest 300 samples each time I calculate the ESS. T attempt
this approach on the PairwiseProductPolicy on the same model used in the previous
trial runs. While my first attempt was not perfect, it did show some promise. The
results can be seen in figure 4.5

Probabilities for model with single-spin window

0.30 1 [. L] .
0.25 A .
0.20 A .

L]
L]
+
L]
0.15 - »
.
L
.
H

pladd|spins different)

0.05 +

eeeses e 0 ¢ sEme ® W o0 - .

0.00 1 L

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S [R

Figure 4.5: Movement of the probability density for the PolicyPairwise using eq
(4.17) as the discounted reward during training. Grey dot is the Wolff policy (4.7)

28

This time around the policy was able to get close to wolff but then quickly move
away, only to get close again and then move away again. I could clearly see that the
model had clear issues converging since the discounted rewards were larger the close
the policy was to wolff but it would quickly move away. I was hoping that by using
the current (7') and previous version (7'71) of the policy to estimate the ESS for
for the last m samples, the policy would not change much between iterations and
would then converge in a region where the ESS reward is maximised. I suspected
that the learning rate was too high when the policy got close wolff and so I decided
to add a decaying learning rate. This on its own did not help that much and after
experimenting with it, the training procedure exhibited results that were very similar
to figure 4.5. It was at this point I realised that I forgot the notion of metastability
Or Teyp (section 3.1). I was not allowing the chain to reach a metastable region
before calculating the ESS. I decided to let the chain run for a certain amount of
time between training steps to improve the estimates of the ESS. This meant that
training times would increase but would allow for better accuracy. At the same
time I found an R package [10] that was able to estimate the ESS. Comparing this
with my implementation, it gave very similar results in calculating the ESS for large
sample sets but had lower variance when estimating for smaller sample sets. 1 will
provide my estimate and the R package estimate when evaluating the samplers but
for training purposes I decided to use the R package since I would be estimating
with smaller sample sets. In summary, I decided to:

1. Add a decaying learning rate. After every 20 training steps, the learning rate
would decrease by a factor of a € (0,1)

2. After optimising the policy at each training step, I would allow the chain to
run for a certain amount of time before the next training step. This would be
a hyper parameter to determine.

3. I would instead use an R package [10] to estimate the ESS during training.

I attempt this altered approach on both policies for the same model used in previous
attempts. The results can be seen in figures 4.6 and 4.7.

29

Probabilities for model with single-spin window

0.5

0.4 7

0.3

0.2 7

pladd|spins different)

0.1 - .
L]
L]

anmmmmssssssassn s sns s os s Jea o oV s @ et e T

0.0 ®

T T T T T T T T
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
pladd|spins same)

Figure 4.6: Movement of the probability density for the SimpleClusterPolicy usingeq
(4.17) as the discounted reward during training. Grey dot is the Wolff policy (4.7)

Probabilities for model with single-spin window

0.8 1

0.7 1

0.6 1

0.5

0.4 1

0.3

pladd|spins different)

0.2 1

0.1 L]
.o... ..

0.0 TNt b elestageens A°

T T T T T T T T
0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575
pladd|spins same)

Figure 4.7: Movement of the probability density for the PairwiseProductPolicy using
eq (4.17) as the discounted reward during training. Grey dot is the Wolff policy (4.7)

30

This approach worked alot better and was able to get much closer to wolff than
when using the pointwise covariance (4.9) as the loss. For the SimpleClusterPolicy
it was able to get close to wolff and then oscillated in a horizontal window around
it. The PairwiseProductPolicy showed the same behaviour but with a much smaller
window. With the help of the decaying learning rate, I was able to observe in both
cases that the window of oscillation grew smaller around wolff as the learning rate
decayed. With this I was able to show convergence towards wolff. Not only this,
when I compared these policies to the ones trained using the pointwise covariance
loss function (4.9), they peformed much better. I will elaborate on this further in the
evaluation section but I compared the samplers by calculating the ESS on a large
sample set. Now that I was able use the framework to learn a good sampler for the
standard Ising model, I moved on to see how well the framework would perform for
the Ising model with plaquette interactions (3.25).

4.7 Plaquette interactions

Now I will look to sample from the Ising model with plaquette interactions (3.25).
Like before I will set J = 1 and will consider the model for specific values of K.
Writing this explicitly, the models I will try to sample from will be,

m(S) = exp (5 SDIIsi+x> 11 sl-) g)re[zoii_o& 02.02.04}, (4.18)

leL i€l peP icp

Unlike before this was uncharted territory. There was no known target density
for the policy to reach for so the best I could do was show that the discounted rewards
converged and that there was a large ESS for a large sample set. I experimented
using the PolicyPairwiseProducts on a 10 x 10 model size using the procedure. The
results can be seen below.

31

Probabilities for model with single-spin window

0.7 1

0.6 1

0.5 1

0.4 7 .

0.3 7

p(add|spins different)

0.2 A

0.1 + -

0.0 - u..- m- . me

T T T T T T
0.45 0.50 0.55 0.60 0.65 0.70
pladd|spins same)

Figure 4.8: K = 0.2. Movement of the density for the model in (4.18)

Losses Plot
0.005 [
0.004 i
I
|I
Il
» 00034
& [H
0 Illi
S 0.002 h
0.001 :]1 0
k
0.000 a ;
0 20 40 60 80 100 120

Index

Figure 4.9: K = 0.2. Plot of the sum of the action probabilities divided by the
discounted rewards

32

Probabilities for model with single-spin window

0.25 +

0.20 1

0.15 +

0.10 +

pladd|spins different)

0.05 +

0.00 T

0.2

Figure 4.10: K = 0.4. Movement of the density for the model in (4.18)

0.0020 A

0.4 0.5
pladd|spins same)

0.3

Losses Plot

0.0015 A

0.0010 4

e

*

Losses

0.0005 4

Y=

0.0000 4

-

KRR S S RS e S R SRR SHRABGIRIRSIRER

Figure 4.11: K = 0.

discounted rewards

60 100 120

Inclex

20 40 80

4. Plot of the sum of the action probabilities divided by the

33

Probabilities for model with single-spin window

L] -
0.4
= ™
c
L 0.3 A
£
=
w
£
& 0.2
E L]
=
=
=8
0.1 :
L]
L]
- - . ’
0.0 -M.“

0.2 0.3 0.4 0.5 0.6
pladd|spins same)

Figure 4.12: K = —0.2. Movement of the density for the model in (4.18)

Losses Plot

g i:
§41 I
1 ¥
) s 1!
2| TR Xax ¥ ¥ ¥ .
Bk Kk \ 1 X x
WYl MR WL LR P I I, CO LI WY
4] 20 a0 60 80 100 120 140

Index

Figure 4.13: K = —0.2. Plot of the sum of the action probabilities divided by the
discounted rewards

34

Probabilities for model with single-spin window

0.09 +

0.08

0.07 4

0.06

0.05 +

pladd|spins different)

0.04

0.03 +

". - .. e
“ofe s v tabubidutbarr

0.2

0.3 0.4 0.5
pladd|spins same)

Figure 4.14: K = —0.4. Movement of the density for the model in (4.18)

Losses Plot

0.00012
0.00010 A
0.00008 +

0

U

w 0.00006
0.00004

0.00002 4

0.00000 -

£

b

¥
!

X
)

E3%

’%

Ind ex

Figure 4.15: K = —0.4. Plot of the sum of the action probabilities divided by the

discounted rewards

Training for the models with K > 0 was a success since both the probability
density and the losses converged to a minimum and produced high values for the ESS
(seen in table 5.2). For experiments where we had K < 0, the densities managed

to converge whereas the losses did not.

The ESS values it produced were also

significantly smaller than when K > 0 and there was no clear indication as to why

this was the case.

35

Chapter 5

Evaluation

The ESS estimates in the tables below were taken for 5000 samples and were av-
eraged over 10 chains. I use the abreviations Simple for the SimpleClusterPolicy
and Pairwise for the PairwiseProductsPolicy. It should be noted that if the esti-
mated effective sample size is larger than n = 5000, this means that there are some
negative autocorrelation estimates i.e. for some values of ¢ in eq (3.6). What this
means is that if there are negative correlation in the samples, the variance of the
estimator from correlated samples can be smaller than the variance of the estimator
from independent samples. This in turn leads to larger effective sample size.

5.1 ESS results table

Policy Training method My ESS estimate | R package - mcmcese estimate
Wolff Fixed (no training) 7578.95 8656.32

Simple | Pointwise Covariance loss 4190.23 4462.45

Simple ESS Reward 4607.86 5074.5

Pairwise | Pointwise Covariance loss 4640.50 4992.01

Pairwise ESS Reward 5674.27 5713.43

Table 5.1: Standard Ising model

The purpose of the table above is to highlight the clear improvement made when
using the ESS as a reward function (4.17) over the pointwise covariance loss (4.10)
for the same policy. The ESS values increased for both policies on average when
estimating it with both my implementation and mcmcese [10]. The PairwisePro-
ductPolicy using the ESS reward function managed to get ESS values larger than n
making it the best performing policy that was trained. While the trained policies
were not able to get ESS values close to the original wolff algorithm, it is more im-
portant to get ESS values or n.ss to be close to or greater than n as that is enough
to say that most of or all the samples produced were independent. This is evidence

36

that this training method was clearly superior and has potential to be generalised
to learn samplers for models other than the Ising model.

Policy | Training method | K | My ESS estimate | R package - mcmcse estimate
Pairwise ESS Reward 0.2 6638.55 6726.38
Pairwise ESS Reward 0.4 5436.24 4380.08
Pairwise ESS Reward -0.2 1476.15 1403.57
Pairwise ESS Reward -0.4 455.98 457.32

Table 5.2: Ising model with plaquette interactions

From this table we can see that the policies were able to learn to sample from
the Ising model with plaquette interactions with varied success. They were able to
sample particularly well for the models with K > 0 but not so well for the other case.
It was not clear to me if this was an engineering problem on my end or something
to do with the actual physics behind the model. This could also just be a limiting
factor of the Policy architecture itself, not being able to characterise the model well
enough for when K < 0.

Overall, my results indicate that using reinforcement learning to learn better sam-
plers without the use of datasets was possible, as shown by my results. There was
now also a way to effectively sample from the Ising model with plaquette interac-
tions for when the plaquette coupling term K > 0. Both of which extends the state
of the art in their own way and the concepts used for training can be generalised
for other models.

5.2 Conclusions and future work

I touched upon the fact that the concepts used for training can be generalised for
other models. To elaborate, all that was required was to design a suitable policy
that characterises the model to be sampled for, a way to use said policy to generate
samples and a well suited function f to map the samples to a real value. This
choice of f should be based off the context of the model being sampled for. Then
the training method used earlier can be employed to learn the correct parameters
of the policy. The drawbacks of this approach mainly comes from the setting of
hyperparameters. Both the training time and the learning rate was important to
tune but what was more crucial was the learning rate decay. There was no good
way of telling when the policy had converged during training since the ESS estimate
calculated in each iteration of the training loop was based on a small sample set
causing it to be subject to variance. Therefore the learning rate decay played a
huge part in convergence as the policy will eventually settle in region where the ESS
is maximised. The amount of samples used to estimate the ESS as well as the time
for the chain to reach equilibrium 7., in each training step were also parameters to

37

be set. The ESS estimate improved in accuracy just by adding more samples whereas
Tezp Was hard to determine by nature. Again the problem raised by 7.,, was easily
solved by just letting the chain run for a long period at the cost of training times
being increased. The trade off between accuracy and training times was present in
all of the hyperparameters listed so far. The problem raised by the learning rate
decay can be mitigated by determining a better convergence criterion and if there
was a way to estimate an appropriate .., there would be less guesswork in setting
that parameter. However the problem raised by estimating the ESS for small sample
sets will always be there.

As for the future work for sampler I produced, all that was left to be able
to sample for the Ising model with plaquette interactions for when the plaquette
coupling term K < 0. This could be done by adjusting the policy architecture or
by maybe altering the reward function.

38

Bibliography

1]

2]

[9]

Sokal AD. Monte Carlo Methods in Statistical Mechanics. New York; 1996. Chap-
ter 3.

Stan Development Team. Stan Reference Manual [Internet]. 2011-2022 [cited
2024 Jun 19]. Section 16.4. Available from: https://mc-stan.org/docs/
reference-manual/effective-sample-size.html

Correia A, Worrall D, Bondesan R. Neural Simulated Annealing. arXiv e-prints
[Internet]. 2022 Mar [cited 2024 Jun 18]. Available from: https://arxiv.org/
abs/2203.02201

Barbu A, Zhu SC. Monte Carlo Methods. Springer Nature; 2020.

Robert CP. The Metropolis-Hastings Algorithm. arXiv [Internet]. 2015 Apr [cited
2024 Jun 18]. Available from: https://arxiv.org/abs/1504.01896

Bojesen T. Policy-guided Monte Carlo: Reinforcement-learning Markov chain
dynamics. Phys Rev E. 2018;98:063303.

Wang L. Exploring cluster Monte Carlo updates with Boltzmann machines. Phys
Rev E. 2017;96(5):051301. doi: 10.1103/PhysRevE.96.051301.

Luijten E. Introduction to Cluster Monte Carlo Algorithms. Department of Ma-
terials Science and Engineering, Frederick Seitz Materials Research Laboratory,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A. [In-
ternet]. 2021 [cited 2024 Jun 18]. Available from: https://csml.northwestern.
edu/resources/Reprints/lnp_color.pdf

Newman MEJ, Barkema GT. Monte Carlo Methods in Statistical Physics. Ox-
ford: Oxford University Press; 1999.

[10] Flegal JM, Hughes J, Vats D, Dai N. mcmcese: Monte Carlo Standard Errors

for MCMC (version 1.4-8) [Internet]. 2022 [cited 2024 Jun 15]. Available from:
https://cran.r-project.org/web/packages/mcmcse/

39

