Imperial College
London

BENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Bayesian Optimisation on Graphs

Author: Supervisor:
Vladimir Volgin Roberto Bondesan

June 23, 2024

Abstract

Searching for new molecules is a task that requires us to solve a difficult black-box
function optimization problem. Many studies tackle this problem in different ways
like optimizing for a string representation of a molecule or using iterative approaches
that approximate the black-box function. However, there are only a few that look
at Bayesian optimisation (BO) for solving the issue and in general the area of BO
on discrete structures is underexplored. BO has the potential to be very effective
as it can operate on graph representations of molecules without the need to ap-
proximate cost function, thus, being fast and accurate. This project capitalizes on
previous studies about graph BO and combines it with the performance-improving
techniques for regular BO to introduce the implementation that pushes the speed of
the optimization to new levels, without sacrificing accuracy.

Acknowledgments

First, I want to thank my supervisor Dr. Roberto Bondesan for providing valuable
insight into an area that was completely new to me and guiding me to the end.
Additionally, thanks to the MSc group that worked on implementing Bayesian opti-
misation on graphs before (especially Brian Cregan) for navigating me through their
code base and giving helpful advice.

Contents

1 Introduction
1.1 Related Work . . .

2 Preliminaries

............................

2.1 Bayesian Optimization v v v v v v v v vt e

2.2 Gaussian Process .

2.3 Training Gaussian Process
2.4 Acquisition Function L oo oL

2.5 Kernel
2.6 Graph Kernel . . .
2.7 Molecule as a Graph

3 Implementation
3.1 GPU Utilization . .
3.2 Matrix-Matrix Infere

............................

NCE v v v v i s e e e e e e e e e e e e

3.3 Kernel Approximation

4 Experimental Results
4.1 Experimantal Setup
4.2 Quantitative Results
4.3 Qualitative Results

5 Conclusion
5.1 Evaluation.
5.2 Future Work

Bibliography

............................

O \O 00 00 00 O O OO b

Chapter 1

Introduction

The main problem that inspired this project is formulated like this: how do we find
new molecules with specific needed properties? This is a crucial question as under-
standing an answer to it would allow us for example to create medical drugs to cure
diseases. The problem is that it is an extremely challenging question as searching
for new valid molecules is not an easy task considering that an estimated range of
searches is between 10* and 10°°[1]. Moreover, molecular properties are highly
complex and hard to separate.

Such a task can be formulated as an optimization problem; we have a measure-
ment of how fitting a molecule is and want to find a molecule that maximizes this
measurement. Additionally, we know that this measurement would be a very compli-
cated function that would be costly for us to compute. This is because checking the
molecular properties is a complicated task that might require running an expensive
experiment or a computer simulation that might take hours to perform. Therefore,
one of the key aspects of molecular search is minimizing the number of calls to this
measurement function.

This study explores the use of Bayesian Optimization (BO) over graphs for solving
the problem of searching for novel molecules. This method potentially allows us to
find the desired molecules quickly. BO over graphs is a complex method with many
moving parts, so the work has been done in synergy with the MSc group that de-
veloped the software that implements the algorithm. The focus of this project has
been on improving the program’s performance and pushing the speed of BO itera-
tions as high as possible by implementing the GPU acceleration and investigating the
options of using scalable kernel approximations to reduce the time complexity of the
calculations.

1.1 Related Work

There are plenty of researches that use different approaches and aim to solve the
problem of searching for molecules with specific properties. One example is a
study[2] that uses iterative graph generation for molecular search. The disadvan-

4

1.1. RELATED WORK

tage of such an approach is that it requires the cost function to be called often
which makes it necessary to approximate it as, otherwise, such calls would need
too much computational resources. This can lead to less accurate results in evaluat-
ing new molecules. Another research[3] implements a neural network to optimize
over latent spaces, that operates directly on string (SMILES) representation of the
molecules. The problem with this method and with other methods (e.g. using de
novo molecular generation[4]) that optimize over string representations is that for
a given string it is computationally costly to find out if it does correspond to a valid
molecule or not.

Bayesian optimization on the other hand combines the advantages of having molecules
as graphs, thus, not requiring costly computations of checking the validity of the
molecule, and minimising the number of calls of the cost function for evaluating
molecules. There are a few quite recent papers, that investigate the BO on graphs
for molecular search. For instance, the first study[5] suggests using the combination
of the graph kernel and a manually created kernel (more on kernels in the pre-
liminaries section) that focuses on specific graph features with the weights of these
kernels being the hyperparameters of the BO model. Another research[6] introduces
the library that allows the use of graph kernels for graph BO. However, these studies
do not consider the performance side of the methods, conducting the experiments
with an extremely small number of iterations. But, performance in this area is very
crucial, if we want to search through as many molecules as possible to have the
potential to find the most fitting one. The problem is that graph kernels for the
Gaussian process limit options for utilization of GPU acceleration as well as scalable
kernel approximations that can only work with stationary kernels.

In this project, the graph kernels were not used for the Gaussian process itself, in-
stead, the classic stationary kernel was used, paired with a way to translate graphs
into tensors, which opened many options for speeding up the BO iterations by many
times. This allowed it to scale the BO to a much larger set of points.

Chapter 2

Preliminaries

2.1 Bayesian Optimization

Bayesian optimization is an effective tool for optimizing black-box functions that are
costly to evaluate. The problem we are trying to solve is

max f(x 2.1
zeA f(@) 2.1
Where A is a set of feasible solutions and [is a function with an unknown structure
which does not allow us to optimize it using other methods easily. Moreover, f takes
a lot of time to evaluate which limits our ability to query it too often, encouraging
us to carefully choose candidate points to be evaluated.

There are two main parts of the BO algorithm. The first one is creating a Bayesian
statistical model for modelling the function f from already acquired data. The sec-
ond is using the acquisition function to choose the next point to evaluate. We eval-
uate f at this new point, add the result to our data and repeat the process until we
run out of the computational capabilities. The result of BO would be the point with
the maximum value of f at it.

2.2 Gaussian Process

For modelling our function we will use the Gaussian process (GP) which describes
the distribution over functions giving us the distribution of potential values of f at
points in A.

Definition 2.2.1. A Gaussian process is a collection of random variables any finite
number of which have a joint Gaussian distribution[7].

The GP is defined by the mean function m(z) and a positive-definite covariance
function (kernel) k(x, z’) of a function f(z) like this:

2.2. GAUSSIAN PROCESS

k(z,2") = B[(f(z) — m(x))(f(2) — m(a")]
and so we can write
f(@) ~ GP(m(z), k(z,2)).
Without loss of generality, we can take the m = 0. The kernel we will discuss later
in this section. If we have several inputs X, from the candidate set X we can write

fi~ N(07 K(X*7 X*))

where f, is a distribution of outputs and K (X,, X,) is a covariance matrix of inputs.
Now consider, we have already evaluated training inputs x; with corresponding out-
puts f; with i € 1...n. Then from the prior, we get that the training outputs f and n,
test outputs f, have a joint distribution:

f N, K(X,X) K(X, X,
£, K(X., X) K(X.,X.)

where K (X, X,), K(X,, X) and K(X,, X,) are n X n,, n, x n and n, x n, covariance
matrices respectively, evaluated at corresponding pairs of points.

To get the posterior distribution we need to condition the prior Gaussian distribution
on our observations [7]

FoX0 X, f ~ N (X XK (X, X) 7 K (X, X))~ K (X, XK (X, X) T K (X, X)),

It is important to note that we only looked at the case where our observations are
noise-free which means that the observations are exactly the values of the function.
Now assume we have a system noise with variance o2 and our observations are
yi ~ N (fi,0?) for i € 1...n. Then we have

K(X,X)+0% K(X,X,)
fx K(X,,X) K(X,, X))
and posterior distribution therefore would be
Jl X, X, f ~ N (u(X,), (X)),
where

uX) = K(X, X)(K(X, X) +0*1) "y
o(X,) = K(X,,X,) — K(X,,X)(K(X,X)+o*)'K(X, X,).

Thus, for a set of potential points (or for one point as well, X, being 1 x 1 matrix), we
can use the equation above to evaluate their posterior predictive mean and variance.

7

2.3. TRAINING GAUSSIAN PROCESS

2.3 Training Gaussian Process

The Gaussian process has a set of hyperparameters #, which may include for example
likelihood noise or the locations of the inducing points (landmarks for predictions) if
they are used. The parameters are learned as usually happens with neural networks,
by minimizing the marginal log-likelihood function:

L(0]X,y) = log |K (X, X) + o*I| —y" (K(X, X) + 0*I) 'y,
dL L d(K(X,X) + o)
— = KX, X 1

T((K (X, X) + 027 f;; iy

(K(X,X)+ o) 'y+

2.4 Acquisition Function

There are many different acquisition functions but for this project, we will just use
the expected improvement (EI) acquisition function, which is a common and consis-
tent way of deriving the next candidate point. The principle behind EI is straight-
forward, we want to find a point that on average would increase our observed max-
imum of f/ by most. We can think of it as if we had only one more observation left
and we wanted to get the best solution at this point. So, EI can be written like this

EI"(‘I*) = maX(O,,u(:C*) - ymam)a

where ¥,,.. is the maximum observed value. This can be further rewritten using
integration by parts[8] as

EL(2.) = (u(a.) - ymag,;)@(%) . U@*W%),

where ®(z) and ¢(x) are the cumulative distribution function and probability den-
sity function of the standard normal distribution, respectively. Then using the EI
acquisition function we can select the next point to evaluate

Tpy1 = argmax, . (El,(x,)).

We continue to iteratively choose new candidate points using the equation above
until we exceed the computation time.

2.5 Kernel

The important question left is what kernel function to use for our GP. In fact, this is
a very challenging question. There is an endless amount of different kernels, includ-
ing graph kernels as well. We will discuss the chosen solution in more detail in the
implementation section.

2.6. GRAPH KERNEL

The kernel itself is a positive-definite function £ : X x X — R that measures how
similar are the two points from the candidate set. In general, if two points are similar
their covariance will be greater, which is based on the assumption that points closer
to each other are more likely to have similar values. For example, if we were working
with points in R” we could use the squared exponential covariance function

k(z,2') = aexp(=|lz — 2|]°).

Here we can see that if two points are the same, covariance would be equal to 1,
else it would decrease if the points were further apart.

2.6 Graph Kernel

The squared exponential kernel shown above works well for continuous spaces, but
we will be dealing with molecules represented as graphs which are discrete struc-
tures, so we need another way to measure the similarity between them. Fortunately,
there is a large variety of graph kernels that operate directly on graphs, for example,
a random walk graph kernel that calculated the number of common random walks
between two graphs[9]. Another example is the shortest-path kernel that trans-
forms graphs into shortest-path graphs and compares them[10]. The transformation
is done by connecting all the vertices of the original that are in the same connectivity
component and giving each edge a value equal to the length of the shortest paths
between the corresponding vertices of the original.

The more recent and advanced graph kernel is the deep graph kernel[11]. This
kernel is inspired by natural language processing and deep learning; it decomposes
a graph into substructures, puts them in a list and treats it like a sentence of words.
Then this ”sentence” goes through a feed-forward neural network (layers of neurons
with one direction of information flow) that maps similar "words” to the nearby
places in the vector space. Such an approach allows the kernel to consider the
similarities between the graphs as a whole as well as between the substructures
which leads to better accuracy in graph classification.

2.7 Molecule as a Graph

Initially, the molecules on which the BO will be operating are represented using
SMILES (Simplified Molecular Input Line Entry System) which is a string of symbols
that corresponds to a three-dimensional molecular structure. Then SMILES strings
are converted to graphs that will be stored as network objects in the Python program.

We will represent the molecules as graphs G where atoms would become nodes and
bonds between atoms would become the edges. Graph G with n nodes would be a
tuple (A, E, F'), where A is an adjacency matrix n x n with values {0, 1}, A;; being
1 if there is an edge between nodes i and j and O otherwise. F is an edge tensor
{0, 1} where entry Ey;; = 1 if there is an edge between nodes 7 and j and it is

9

2.7. MOLECULE AS A GRAPH

of type k, the total number of edge types being b. Therefore, A;; = Z?zl E,;;. Finally,
F € R™ is a feature matrix, where each node has d features represented in real
numbers.

10

Chapter 3

Implementation

The implementations of this project are based on an already existing program devel-
oped by a group of MSc students as a part of their group project. In the initial state,
the software is able to conduct BO on molecules represented as graphs using the
graph kernels from grakel python library. The program is complex with many differ-
ent parts that depend on each other, so one of the challenges is to identify how the
BO flow works and what parts should be changed and added in order to implement
the GPU-related optimizations and kernel approximation. The final goal would be
to compare the results which include the accuracy and speed of the code with GPU
optimization and with or without kernel approximation with the results of the initial
program.

3.1 GPU Utilization

The first thing to notice is that the BO algorithm requires a lot of matrix compu-
tations, so intuitively it should work significantly faster on GPU rather than CPU.
However, graph kernels did not allow for the use of CUDA, a platform for fast and
parallel GPU computation. The problem was that graph kernels operated on graph
objects not on tensors, so to utilize GPU, it was needed to use a different approach.

In order to avoid using graph kernel for covariance matrix it would be necessary
to convert the graph objects into tensors and use for example a classical squared
exponential covariance function (its also called radial basis function (RBF)). This
means that some accuracy might be sacrificed as instead of having a special kernel
for graphs we would have a kernel operating on graph embeddings. However, such
an approach would lead to many more iterations done in the same time limit which
is potentially a much more significant thing. Additionally, the RBF kernel is station-
ary, so it depends only on the distance between the points and not on the values
themselves[12]. This is another advantage of this approach as the use of stationary
kernels allows for the later implementation of an advanced kernel approximation.

If we are set on using the RBF kernel on tensors, a way of converting the graphs to
tensors is needed. This is possible to do manually, but there is a risk of RBF kernel

11

3.2. MATRIX-MATRIX INFERENCE

not being able to extract some of the correlations from tensor forms as such kernel
would have no idea we are working with graphs. Another option that was chosen
for this project is to use the deep graph kernel to get the tensor embeddings from
graphs. Such an option is easier to implement and it utilises the deep graph kernel’s
ability to find correlations between substructures using the neural network. There
could be an argument against it as creating such embeddings is not easy computa-
tionally. However, we do not need to convert every molecular graph we have into a
tensor, we only need to convert the initial sample and then each new candidate after
they have been chosen by the acquisition function, which should not significantly
impact the performance.

After implementing the above it was finally possible to implement GPU utilization
using CUDA. It was important to ensure that all the tensors, the model, the loss
function, and the acquisition function were on GPU. But then occurred a difficult
problem to solve - the GPU was running out of memory. After doing a bit more
than a thousand iterations the program was using all 12GB of GPU memory. A
combination of many small things made memory usage much more effective. It
had to be ensured that there was minimal movement of data between CPU and
GPU, there was a minimal amount of calls to the function that created the graph
embeddings, and that all used data, models, and optimizers were deleted. This
made it possible to do six times more iterations before running out of memory.

3.2 Matrix-Matrix Inference

Running BO on GPU not only increases the performance by itself but also allows
for the utilization of gpytorch’s (python library) blackbox matrix-matrix (BBMM)
Gaussian process inference with GPU acceleration[13]. The equations, discussed
in the preliminary section that are by far the most computationally costly are the
(K(X, X)+0%I)"'y of the predictive distribution, log |K' (X, X)+02I| of the marginal
log-likelihood, and Tr((K (X, X) + o2I) L &EXX40")y of jts derivative. The de-
fault method to compute these would be to use the Cholesky decomposition of
(K(X,X) + 02I) which has a time complexity of O(n?), so it scales badly to a
large number of points. BBMM uses a modification of the conjugate gradients
algorithm[14] that allows for precise approximation of the above equations making
the use of GPU’s ability for parallel computations. Therefore, using BBMM allows
us to reduce the time complexity to O(pK'), where K is the time complexity to mul-
tiply (K (X, X) + 02I) by a n x ¢t matrix (¢ is data dimension), which is O(n?t) for
a standard matrix, and p is the number of iterations of the modified conjugate gra-
dient algorithm that are done (if p = n we get the exact result). This means that
BBMM works significantly faster than the Cholesky decomposition, especially with
the growing number of points. The requirement for space is O(nt).

12

3.3. KERNEL APPROXIMATION

3.3 Kernel Approximation

Implementing the RBF kernel on tensors also gives an option to use a scalable kernel
approximation. Such an approach was tested for regular continuous space Gaussian
processes, but not on graphs, so one of the aims of this project is to evaluate it for
use in graph Bayesian optimization.

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)[15] is a
framework for kernel approximation for fast computations through kernel interpo-
lation. It places several inducing points on the grid and interpolates to create a
kernel approximation in near-linear time, with the error decaying cubically. How-
ever, KISS-GP turned out to be extremely ineffective when operating on tensors that
represented graphs. The problem was that these tensors were of high dimensional-
ity to accurately store the molecular graphs, which led to the algorithm being slow
due to the grid construction scaling exponentially with the dimensionality. This led
to the consideration of Scalable Kernel Interpolation for Product Kernels (SKIP)[16].

SKIP broadens KISS-GP to higher dimensional data by abusing specific kernels’ prod-
uct structure, leading to a linear rather than exponential scale of runtime from the
dimensionality.

13

Chapter 4

Experimental Results

In this section, we will investigate and compare the results of running the baseline
solution that used a deep graph kernel with the results of running the newly im-
plemented solution that utilizes the RBF kernel with GPU acceleration and the deep
graph kernel for creating the graph tensor embeddings. Additionally, we will look
into the outcome of using the kernel approximation for the RBF kernel.

4.1 Experimantal Setup

All the experiments were done with the same setup and parameters to fairly reflect
the performance differences. There was the same number of 10 initial sample points
and refitting of the Gaussian process model was done every 10 iterations. The pro-
gram was run on the Imperial College London GPU cluster, using Tesla A30 12GB
Mig GPU Devices and AMD Epyc CPU. Two different oracle (the black box) functions
were used for the experiments. The first one is "troglitazone rediscovery”, which
aims to discover the troglitazone molecule used for diabetes, treatment[17]. The
other one is a function searching for thiothixene, the antipsychotic that helps with
the treatment of schizophrenia[18].

The experiments utilising the GPU were running until the 12GB of GPU memory ran
out, which was approximately 6500 iterations without the scalable kernel approx-
imation and 350 with the approximation. The baseline solution was operating for
1000 iterations as it was becoming much slower after and it would not make sense
to spend computational power on it.

4.2 Quantitative Results

Firstly we will look at how fast we can do the Bayesian optimization iterations. The
difference in times for iterations between two of the oracle functions turned out to
be very insignificant, which is expected due to the BO algorithm itself being the
same, therefore, the results presented in this section are only from the "troglitazone
rediscovery” tests. Table 4.1 shows the number of minutes it takes for a particular

14

4.2. QUANTITATIVE RESULTS

implementation to reach the different numbers of iterations.

The implementation | first 100 first 350 first 1000 first 6500

Baseline 6

GPU 8

GPU + Approximation 9

428 .
105 747

Table 4.1: Time (minutes) for reaching the iteration counts

Time for one iteration comparison

80 = Baseline
— GPL
a0
[%5]
Q
E 40
-
20
0
0 200 400 800 1,000
lteration

Figure 4.1: Average iteration time scaling

Figure 4.1 shows how much time a single iteration takes when the number of it-
erations grows. The points by which the graphs for the baseline solution and for
the implemented solution without kernel approximation are plotted are taken to be
average over 20 iterations because the time of iterations, especially for the baseline
solution, varies significantly depending on how many iterations have passed since
fitting. The graph depicts only the first 1000 iterations, but for the rest of the 5500
iterations of the GPU-utilizing solution, the time to do one rarely goes over 7 seconds.

The results above, show how well the implementation that utilises the RBF kernel
with GPU acceleration scales to a larger number of points, while the baseline solu-

15

4.3. QUALITATIVE RESULTS

tion with graph kernel makes it very computationally costly to search for more and
more molecules. Even if we had much greater computational power, it is clear that
that would not help much as the rate with which the computations become more
expensive for the baseline solution grows rapidly.
The solution with the kernel approximation could not run for many more than 350
iterations due to running out of GPU memory. Additional experiments with kernel
approximation were done on the CPU to compare the results to the initial solution,
however, the iterations were taking so much time that those results can be consid-

ered irrelevant.

4.3 Qualitative Results

In this section, we look at the accuracy and predictive power of different models.
Obviously, the greater speed would be useless, unless it could be capitalized on for
getting better results in the same time frame.

Best Observed troglitazone_rediscovery Value Over Iterations
26

0.24 4

Mean of Top 1 Observed

e

=

o
L

0.14 4

0.12 4

T T T T T T
] 200 400 600 800 1000
Iteration

(a) Top 1 observed

Best Observed troglitazone_rediscovery Value Over Iterations

0.200

0.175 A

0.150

0.125 A

0.100

Mean of Top 100 Observed

0.075 -

0.050

T
1000

(=]
o
=1
=1
F
=3
=1
@
=]
=1
@
=1
=1

Iteration

(c) Top 100 observed

0.24

0.22 4

Mean of Top 10 Observed

=]
=
IS

0124

0.25 4

o ° o
= o S
[=] w [=]

;

troglitazone_rediscovery

e

o

v
L

0.00 1

e

=

o
L

Best Observed troglitazone_rediscovery Value Over Iterations

T T T T T T
] 200 400 600 800 1000
Iteration

(b) Top 10 observed

Observed troglitazone_rediscovery Over lterations

—— Moving Average, Window Size 20

T T T T T T
] 200 400 600 800 1000
Iteration

(d) Average score

Figure 4.2: Baseline results for troglitazone rediscovery

16

4.3. QUALITATIVE RESULTS

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.6

0.5

0.5 1
- -
g e
o o
a 8 0.4
° [=]
> 0.4 g
g g
E 5 03
8 03 g
= =

0.2
0.2
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Iteration Iteration
(a) Top 1 observed (b) Top 10 observed

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations INTERIM: Observed troglitazone_rediscovery Over Iterations

Ll | — Moving Average, Window Size 20

0.50

0.5
0.45

0.40 | 0.4 4

0.35
0.3

0.30

0.2
0.25

Mean of Top 100 Observed
troglitazone_rediscovery

0.20 0.1
0.15 4
0.0 4
6 lDIOU 2 D‘UO 30‘00 4060 50‘00 60:30 6 lDIOU 2 D‘UO 30‘00 4060 50‘00 60:30
Iteration Iteration
(c) Top 100 observed (d) Average score

Figure 4.3: GPU results for troglitazone rediscovery

We can look at figures 4.2, 4.3, and 4.4, which show how the best scores grow with
the number of iterations of three solutions for the troglitazone rediscovery oracle
function. It’s easy to notice that the corresponding numbers of iterations of the first
two models produce very similar results and the implementation with kernel approx-
imation reaches a higher score a bit faster, getting above 0.26 with its 350 iterations.
Another significant thing to note is that after the 1000th iteration, the GPU imple-
mentation without approximation keeps steadily improving, showing that the final
score that the baseline solution produces is far from optimal.

Figures 4.5, 4.6, and 4.7 show the outcomes for the thiothixene rediscovery oracle.
These results validate the exact points, introduced above, confirming that the GPU
implementation with and without kernel approximation does not lose in accuracy to
the initial program.

17

4.3. QUALITATIVE RESULTS

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.26 4

e e e

o o %)

=] ~ ES
L L L

Mean of Top 1 Observed

e

=

@
L

0.16 1

T T T T T
150 200 250 300 350
teration

T
50 100

o

(a) Top 1 observed

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.20

0.18 4

0.16 4

0.14 4

Mean of Top 100 Observed

0.12 4

0.10

T
50 100

o

T T T T T
150 200 250 300 350
teration

(c) Top 100 observed

Mean of Top 10 Observed

troglitazone_rediscovery

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.24

0.22

e o © o o
o v ¥
N - o o [=]

0.10 |
0 s0 100 150 200 250 300 350
teration
(b) Top 10 observed
INTERIM: Observed troglitazone_rediscovery Over Iterations
—— Moving Average, Window Size 20
0.25
0201 t JJJT' I '| I‘l||
| il A
A K
LN r‘ﬂ |
| Tkl |
0.15 - w Lt ' ‘
I
0.10
0.05 |
0.00 +— T T T T T T T
0 50 100 150 200 250 300 350
teration

(d) Average score

Figure 4.4: GPU + Approximation results for troglitazone rediscovery

18

4.3. QUALITATIVE RESULTS

Mean of Top 100 Observed

0.050

0.025

Mean of Top 1 Observed

0.225

0.200

0.175

0.150

0.125 A

0.100 -

0.075

Best Observed thiothixene_rediscovery Value Over Iterations

—

0.24

o

18

[N
L

e

o

=1
L

e

=

]
L

0.16 1

T T T T
400 600
teration

T T
800 1000

(a) Top 1 observed

Best Observed thiothixene_rediscovery Value Over Iterations

T T T T
400 600
teration

(c) Top 100 observed

T T
800 1000

ry

thiothixene_rediscove!

Mean of Top 10 Observed

0.22

0.16 1

0.14 4

0.25

0.20

e

=

w
L

e

=

o
L

0.05

0.00

o

[N

=
L

e

=

@
L

Best Observed thiothixene_rediscovery Value Over Iterations

T T T
400
teration

(b) Top 10 observed

T T T
600 800 1000

Observed thiothixene_rediscovery Over Iterations

—— Moving Average, Window Size 20

T T
400 600
teration

T T T
0 200 800 1000

(d) Average score

Figure 4.5: Baseline results for thiothixene rediscovery

19

4.3. QUALITATIVE RESULTS

INTERIM: Best Observed thiothixene_rediscovery Value Over Iterations

0.45

0.40

0.35

0.30

0.25

Mean of Top 1 Observed

0.15 4

0.10 4

T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration

(a) Top 1 observed

INTERIM: Best Observed thiothixene_rediscovery Value Over Iterations

0.40

e e

w w

o w
L L

Mean of Top 100 Observed
o
[
wv
)

0.20
0.15 4
0.10 4
T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration

(c) Top 100 observed

INTERIM: Best Observed thiothixene_rediscovery Value Over Iterations

0.45

0.40

0.35 4

0.30

0.25 1

0.20

Mean of Top 10 Observed

0.15

0.10

T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration

(b) Top 10 observed

INTERIM: Observed thiothixene_rediscovery Over Iterations

0.4

ry
o
w
L

thiothixene_rediscove!
o
N
N

e
=
L

0.0

—— Moving Average, Window Size 20

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Iteration

(d) Average score

Figure 4.6: GPU results for thiothixene rediscovery

20

4.3. QUALITATIVE RESULTS

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.26 4

e e e

o o %)

=] ~ ES
L L L

Mean of Top 1 Observed

e

=

@
L

0.16 1

T T T T T
150 200 250 300 350
teration

T
50 100

o

(a) Top 1 observed

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.20

0.18 4

0.16 4

0.14 4

Mean of Top 100 Observed

0.12 4

0.10

T
50 100

o

T T T T T
150 200 250 300 350
teration

(c) Top 100 observed

Mean of Top 10 Observed

troglitazone_rediscovery

INTERIM: Best Observed troglitazone_rediscovery Value Over Iterations

0.24

0.22

e o © o o
o v ¥
N - o o [=]

0.10 |
0 s0 100 150 200 250 300 350
teration
(b) Top 10 observed
INTERIM: Observed troglitazone_rediscovery Over Iterations
—— Moving Average, Window Size 20
0.25
0201 t JJJT' I '| I‘l||
| il A
A K
LN r‘ﬂ |
| Tkl |
0.15 - w Lt ' ‘
I
0.10
0.05 |
0.00 +— T T T T T T T
0 50 100 150 200 250 300 350
teration

(d) Average score

Figure 4.7: GPU + Approximation results for thiothixene rediscovery

21

Chapter 5

Conclusion

5.1 Evaluation

The qualitative results demonstrate that the implementation with RBF kernel that
utilizes GPU allows conducting the Bayesian optimization on graphs with many more
points, not requiring much more time at the stages where the base solution reaches
too long to produce even one iteration. This gives an option to scale the molecular
search drastically.

In our case, the higher search speed does not mean worse accuracy. On the same
iteration, all the solutions produce comparable results, but we just get those results
much faster if we use the implementation introduced in this project. The initial pro-
gram will struggle to find a good molecule settling on a non-optimal result before
reaching the computational time limit. On the other hand, with more GPU memory
the RBF implementation could go on, iterating through many more points and im-
proving the best score, which makes this approach clearly superior.

The kernel approximation, on the other hand, did not show good performance in
terms of speed or memory, however figures 4.4 and 4.7 show potential in terms of
accuracy as the BO had reached high scores (¢0.26 in both) in its 350 iterations.
But, in the current form, it is not worth running the Bayesian optimisation on the
molecular graphs, which are very complex and require high dimensional data to
store them, with the scalable kernel approximation for product kernels.

5.2 Future Work

There is still much to explore in the field of graph Bayesian optimization for molecules.
First of all, for this work, the RBF kernel was used, because it has proven itself in ma-
chine learning and is considered to be quite universal. However other kernels and
their combinations could be considered, while still being able to utilize the GPU’s
ability to compute in parallel. Another area to explore further is the approxima-
tions that can be used to reduce computational costs. For example, the lower rank
approximation for the graph tensors could be considered, to then make it easier to

22

5.2. FUTURE WORK

implement scalable kernel approximation. Moreover, LanczOz variance estimates
(LOVE)[19] can potentially improve the speed of predictive variances and posterior
sampling.

23

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

Madzhidov T. I. Varnek A. Polishchuk, P. G. Estimation of the size of
drug-like chemical space based on gdb-17 data. Journal of computer-aided
molecular design, 27(8):675-679, 2013. URL https://doi.org/10.1007/
s10822-013-9672-4. pages 4

Jiaxuan You, Bowen Liu, Rex Ying, Vijay S. Pande, and Jure Leskovec.
Graph convolutional policy network for goal-directed molecular graph genera-
tion. CoRR, abs/1806.02473, 2018. URL http://arxiv.org/abs/1806.02473.
pages 4

Rafael Gomez-Bombarelli, David Duvenaud, José Miguel Hernandez-Lobato,
Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alan
Aspuru-Guzik. Automatic chemical design using a data-driven continuous rep-
resentation of molecules. CoRR, abs/1610.02415, 2016. URL http://arxiv.
org/abs/1610.02415. pages 5

Kazuki Yoshizoe Kei Terayama Xiufeng Yang, Jinzhe Zhang and Koji Tsuda.
Chemts: an efficient python library for de novo molecular generation. Science
and Technology of Advanced Materials, 18(1):972-976, 2017. doi: 10.1080/
14686996.2017.1401424. URL https://doi.org/10.1080/14686996.2017.
1401424. PMID: 29435094. pages 5

Jiaxu Cui and Bo Yang. Graph bayesian optimization: Algorithms, evaluations
and applications. 2018. URL https://arxiv.org/abs/1805.01157. pages 5

Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong,
Samuel Stanton, Gary Tom, Bojana Rankovic, Yuanqi Du, Arian Jamasb, Aryan
Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, An-
thony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Johannes Durholt,
Saudamini Chaurasia, Felix Strieth-Kalthoff, Alpha A. Lee, Bingqing Cheng,
Alan Aspuru-Guzik, Philippe Schwaller, and Jian Tang. Gauche: A library for
gaussian processes in chemistry. 2023. URL https://arxiv.org/abs/2212.
04450. pages 5

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning, volume 2. MIT Press, 2006. ISBN 978-0-262-18253-9. pages
6, 7

24

https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
http://arxiv.org/abs/1806.02473
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1610.02415
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1080/14686996.2017.1401424
https://arxiv.org/abs/1805.01157
https://arxiv.org/abs/2212.04450
https://arxiv.org/abs/2212.04450

BIBLIOGRAPHY

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Donald Jones, Matthias Schonlau, and William Welch. Efficient global
optimization of expensive black-box functions. Journal of Global Op-
timization, 13:455-492, 12 1998. doi: 10.1023/A:1008306431147.
URL https://www.researchgate.net/publication/235709802_Efficient_
Global_Optimization_of_Expensive_Black-Box_Functions. pages 8

Thomas Gartner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness
results and efficient alternatives. pages 129-143, 2003. URL https://link.
springer.com/chapter/10.1007/978-3-540-45167-9_11#citeas. pages 9

K.M. Borgwardt and H.P. Kriegel. Shortest-path kernels on graphs. pages 8 pp.—
, Nov 2005. ISSN 2374-8486. URL https://ieeexplore.ieee.org/document/
1565664. pages 9

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, page 1365-1374, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450336642. doi: 10.1145/2783258.
2783417. URL https://doi.org/10.1145/2783258.2783417. pages 9

Marc G. Genton. Classes of kernels for machine learning: a statistics perspec-
tive. 2, 2002. ISSN 1532-4435. URL https://dl.acm.org/doi/10.5555/
944790.944815. pages 11

Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and An-
drew Gordon Wilson. Gpytorch: Blackbox matrix-matrix gaussian process
inference with gpu acceleration, 2021. URL https://arxiv.org/abs/1809.
11165. pages 12

John P. Cunningham, Krishna V. Shenoy, and Maneesh Sahani. Fast gaussian
process methods for point process intensity estimation. page 192-199, 2008.
doi: 10.1145/1390156.1390181. URL https://doi.org/10.1145/1390156.
1390181. pages 12

Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable
structured gaussian processes (kiss-gp), 2015. URL https://arxiv.org/abs/
1503.01057. pages 13

Jacob R. Gardner, Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, and An-
drew Gordon Wilson. Product kernel interpolation for scalable gaussian pro-
cesses. 2018. URL https://arxiv.org/abs/1802.08903. pages 13

Janice Parker. Troglitazone: The discovery and development of a novel
therapy for the treatment of type 2 diabetes mellitus. Advanced drug delivery
reviews, 54:1173-97, 12 2002. doi: 10.1016/S0169-409X(02)00093-5. URL
https://www.researchgate.net/publication/11069934_Troglitazone_
The_discovery_and_development_of_a_novel_therapy_for_the_
treatment_of _Type_2_diabetes_mellitus. pages 14

25

https://www.researchgate.net/publication/235709802_Efficient_Global_Optimization_of_Expensive_Black-Box_Functions
https://www.researchgate.net/publication/235709802_Efficient_Global_Optimization_of_Expensive_Black-Box_Functions
https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11##citeas
https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11##citeas
https://ieeexplore.ieee.org/document/1565664
https://ieeexplore.ieee.org/document/1565664
https://doi.org/10.1145/2783258.2783417
https://dl.acm.org/doi/10.5555/944790.944815
https://dl.acm.org/doi/10.5555/944790.944815
https://arxiv.org/abs/1809.11165
https://arxiv.org/abs/1809.11165
https://doi.org/10.1145/1390156.1390181
https://doi.org/10.1145/1390156.1390181
https://arxiv.org/abs/1503.01057
https://arxiv.org/abs/1503.01057
https://arxiv.org/abs/1802.08903
https://www.researchgate.net/publication/11069934_Troglitazone_The_discovery_and_development_of_a_novel_therapy_for_the_treatment_of_Type_2_diabetes_mellitus
https://www.researchgate.net/publication/11069934_Troglitazone_The_discovery_and_development_of_a_novel_therapy_for_the_treatment_of_Type_2_diabetes_mellitus
https://www.researchgate.net/publication/11069934_Troglitazone_The_discovery_and_development_of_a_novel_therapy_for_the_treatment_of_Type_2_diabetes_mellitus

BIBLIOGRAPHY

[18] K Davison, P Leyburn, and H A McClelland. Thiothixene in schizophrenia. BMJ,
4(5577):489-489, 1967. ISSN 0007-1447. doi: 10.1136/bmj.4.5577.489-b.
URL https://www.bmj.com/content/4/5577/489.1. pages 14

[19] Geoff Pleiss, Jacob R. Gardner, Kilian Q. Weinberger, and Andrew Gordon Wil-
son. Constant-time predictive distributions for gaussian processes. 2018. URL
https://arxiv.org/abs/1803.06058. pages 23

26

https://www.bmj.com/content/4/5577/489.1
https://arxiv.org/abs/1803.06058

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Bayesian Optimization
	2.2 Gaussian Process
	2.3 Training Gaussian Process
	2.4 Acquisition Function
	2.5 Kernel
	2.6 Graph Kernel
	2.7 Molecule as a Graph

	3 Implementation
	3.1 GPU Utilization
	3.2 Matrix-Matrix Inference
	3.3 Kernel Approximation

	4 Experimental Results
	4.1 Experimantal Setup
	4.2 Quantitative Results
	4.3 Qualitative Results

	5 Conclusion
	5.1 Evaluation
	5.2 Future Work

	Bibliography

